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Ray tracing revisited

(Slide from Neil Dodgson’s Computer Graphics and Image Processing notes, Cambridge University.)



Ray tracing

The basic algorithm is 
straightforward, but there's 
much room for subtlety

● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges, depth-of-field 

effects

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.
02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,
*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.
5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,
1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,
5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,
black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;
s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)
+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,
tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct 
sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb
(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,
color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-
eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb
(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,
vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main()
{int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.
z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.
z);}
}/*minray!*/

Paul Heckbert’s ‘minray’ ray tracer, which fit 
on the back of his business card.  (circa 1983)



Ray tracing

The ray tracing time for a scene is a function of
(num rays cast) x
(num lights) x 
(num objects in scene) x
(num reflective surfaces) x
(ray reflection depth) x …

Contrast this to polygon 
rasterization: time is a 
function of the number of 
elements in the scene times the number of lights.Image by nVidia



The algorithm

For each pixel on the screen, do:
a. Calculate ray from eye (O) through pixel (X)

i. Set D = (X-O) / |(X-O)|
ii. Ray: R=O+tD

b. Find ray/primitive hit point (P) and normal (N)
c. Compute shadow, reflection, transparency rays; 

recursively call steps a,b,c
d. Calculate lighting of surface at point



Ray/plane intersection

Ray R=O+tD
Poly P={v1,…,vn}

N= (vn-v1)×(v2-v1)
N•(O+tD-v1)=0
Nx(Ox+tDx-vx

1) + Ny(Oy+tDy-vy
1) + Nz(Oz+tDz-vz

1)=0
t = ((N•v1)-(N•O)) / (N•D) 
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Ray/sphere intersection
Ray R=O+tD
Sphere S={P | P•P=r2}

(O+tD) • (O+tD) = r2

(Ox+tDx)
2 + (Oy+tDy)

2 + (Oz+tDz)
2 = r2

(Ox
2+Oy

2+Oz
2) + 2t(OxDx+OyDy+OzDz) + t2 (Dx

2+Dy
2+Dz

2) – r2 = 0
t2(D•D) + 2t(O•D) + (O•O)–r2 = 0



Hit test: Point in nonconvex polygon

Ray casting (1974)
● Odd number of crossings = inside
● Issues:

○ How to find a point that you know is inside?
○ What if the ray hits a vertex?
○ Best accelerated by working in 2D

■ You could transform all vertices such that the coordinate system of 
the polygon has normal = Z axis…

■ Or, you could observe that crossings are invariant under scaling 
transforms and just project along any axis by ignoring (for 
example) the Z component.  

● Validity proved by the Jordan curve theorem



Point in nonconvex polygon

Winding number (1980s)
● The winding number of a point P in a 

curve C is the number of times that the 
curve wraps around the point.

● For a simple closed curve (as any well-
behaved polygon should be) this will be 
zero if the point is outside the curve, non-
zero of it’s inside.

● The winding number is the sum of the 
angles from vi to P to vi+1.

○ Caveat: This method is elegant but slow.
Figure from Eric Haines’
“Point in Polygon Strategies”,
Graphics Gems IV, 1994



Point in convex polygon

Half-planes method
● Each edge defines an infinite half-plane 

covering the polygon.  If the point P lies 
in all of the half-planes then it must be in 
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.
○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.
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Barycentric coordinates

Barycentric coordinates (t1,t2,t3) are a 
coordinate system for describing the 
location of a point P inside a triangle (A,
B,C).

● (t1,t2,t3) are the ‘masses’ to be placed 
at (A,B,C) respectively so that the 
center of gravity of the triangle lies at 
P.

● Interestingly, (t1,t2,t3) are also 
proportional to the subtriangle areas.
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The Jordan curve theorem

“Any simple closed curve C divides the points of the 
plane not on C into two distinct domains (with no 
points in common) of which C is the common 
boundary.”

● First stated (but proved incorrectly) by Camille Jordan (1838 
-1922) in his Cours d'Analyse.  

Sketch of proof : (For full proof see Courant & Robbins, 1941.)

● Show that any point in A can be joined to any other point in A 
by a path which does not cross C, and likewise for B.

● Show that any path connecting a point in A to a point in B 
must cross C.
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The Jordan curve theorem on a sphere

Note that the Jordan curve theorem can be extended to 
a curve on a sphere, or anything which is topologically 
equivalent to a sphere.
“Any simple closed curve on a sphere separates the 

surface of the sphere into two distinct regions.”
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Primitives and world transforms

Given a primitive P and its transform S, is it more 
efficient to find the intersection in screen space, world 
space or object space?

● Not screen space: the transform from camera to screen co-
ordinates is not affine and therefore not angle-preserving.  This 
would prevent many nice optimizations, such as fast bounding 
box tests.

● Our maths aren’t optimized for world space; it would be nice 
to have each primitive encoded as statically as possible with 
minimal parametrization.

○ You only ever need one cube.



Finding the object/ray intersection
in object space

Find R = O+tD in object coords:
● S is the local-to-world transform of P.  
● Invert S to find S-1, the world-to-local transform.
● Define OL=S-1(O) and DL=S-1(D).
● The local ray: RL = OL + t’DL
● Solve for t’ and find the world hit point at S(RL(t’)).

Wyvill (1995) (Part 2, p.45) compared the floating-point ops 
required to hit a sphere with a ray in world or local coordinates.  
He found that at the time it was actually 37% more efficient, per 
ray, to intersect in local space.



Transforming the normal to the surface

Can we transform the normal by S?
● If S is just a concatenated sequence of rotates and 

translates then the normal can be transformed by S as 
above.

● Scales make things trickier.
To find the world-space normal, multiply the local 
normal by the transpose of the inverse of S:

N=(S-1)T NL
● Can ignore translations
● For any rotation Q, (Q-1)T=Q
● Scaling is unaffected by transpose, and a scale of (a,b,c) 

becomes (1/a,1/b,1/c) when inverted
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Lighting revisited

We approximate lighting as the sum of the 
ambient, diffuse, and specular components of 
the light reflected to the eye.

● Associate scalar parameters 
 kA, kD and kS with the surface.

● Calculate diffuse and specular
from each light source separately.
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Ambient lighting

Ambient light is a flat scalar constant, LA.
● The amount of ambient light LA is a parameter of the scene; the 

way it illuminates a particular surface is a parameter of the 
surface.

● Some surfaces (ex: cotton wool) have high ambient coefficient 
kA; others (ex: steel tabletop) have low kA.

Lighting intensity for ambient light alone:
IA(P) = kALA



Diffuse lighting

The diffuse coefficient kD measures how much 
light scatters off the surface.

● Some surfaces (e.g. skin) have high kD, scattering 
light from many microscopic facets and breaks.

● Others (e.g. ball bearings) have low kD.

Diffuse lighting intensity:
ID(P) = kDLD(cos θ)
         = kDLD(N•L)
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Specular lighting

The specular coefficient kS measures how 
much light reflects off the surface.

● A ball bearing has high kS; I don’t.
● ‘Shininess’ is approximated by a scalar power n.

Specular lighting intensity:
IS(P) = kSLS(cos α)n

   = kSLS(R•E)n

   = kSLS(2(L•N)N×L)•E)n
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Total illumination

The total illumination at P is therefore:
I(P) = kALA+kDLD(N•L)+kSLS(R•E)n

summed over all lights L
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Ambient=1
Diffuse=0

Specular=0

Ambient=0
Diffuse=1
Specular=0

Ambient=0.2
Diffuse=0.4
Specular=0.4
(n=2)
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Spotlights

To create a spotlight shining along axis S, you 
can multiply the (diffuse+specular) term by 
(max(L•S,0))m.  

● Raising m will tighten the spotlight,
but leave the edges soft.

● If you’d prefer a hard-edged spotlight
of uniform internal intensity, you can 
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).
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To simulate shadow in ray tracing, fire a ray 
from P towards each light Li.  If the ray hits 
another object before the light, then discard Li 
in the sum.

● This is a boolean removal, so it
will give hard-edged shadows.

● Hard-edged shadows imply a
pinpoint light source.

Shadows



Softer shadows

Shadows in nature are not sharp because light sources are not 
infinitely small.

○ Also because light scatters, etc.
For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is (the total number of rays
that aren’t blocked) divided by (the total
number of rays fired).

○ This is an example of Monte-Carlo integration: 
a coarse simulation of an integral over a space 
by randomly sampling it with many rays.

○ The more rays fired, the smoother the result.
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Reflection

Reflection rays are calculated as
R = 2(-D•N)N+D

● Finding the reflected color is a 
recursive raycast.

● Reflection has scene-dependant 
performance impact. 
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num bounces=1

num bounces=0 num bounces=2

num bounces=3



Transparency

To add transparency, generate and trace a new 
transparency ray with OT=P, DT=D.

To support this in software, make color a 1x4 vector 
where the fourth component, ‘alpha’, 
determines the weight of the recursed 
transparency ray.



Refraction

Snell’s Law:

“The ratio of the sines of the angles of 
incidence of a ray of light at the interface 
between two materials is equal to the inverse 
ratio of the refractive indices of the materials is 
equal to the ratio of the speeds of light in the 
materials.”

Historical note: this formula has been attributed to Willebrord 
Snell (1591-1626) and Rene’ Descartes (1596-1650) but first 
discovery goes to Ibn Sahl (940-1000)  of Baghdad.



Refraction

The angle of incidence of a ray of light where it 
strikes a surface is the acute angle between the 
ray and the surface normal.
The refractive index of a material is a measure 
of how much the speed of light1 is reduced 
inside the material.

● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.

1 Or sound waves or other waves



Refraction in ray tracing

Using Snell’s Law and the angle of 
incidence of the incoming ray, we 
can calculate the angle from the 
negative normal to the outbound 
ray.
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Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in 

[-1,1].
● We call this the angle of total 

internal reflection: light is trapped 
completely inside the surface.
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Refractive index vs transparency
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Refraction in action

http://www.youtube.com/watch?v=ZcUp3q1sgNA
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