
Advanced Graphics

Ray Tracing: Geometry and Lighting
Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

Ray tracing revisited

(Slide from Neil Dodgson’s Computer Graphics and Image Processing notes, Cambridge University.)

Ray tracing

The basic algorithm is
straightforward, but there's
much room for subtlety

● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges, depth-of-field

effects

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.
02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,
*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.
5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,
1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,
5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,
black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;
s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)
+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,
tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct
sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb
(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,
color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-
eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb
(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,
vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main()
{int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.
z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.
z);}
}/*minray!*/

Paul Heckbert’s ‘minray’ ray tracer, which fit
on the back of his business card. (circa 1983)

Ray tracing

The ray tracing time for a scene is a function of
(num rays cast) x
(num lights) x
(num objects in scene) x
(num reflective surfaces) x
(ray reflection depth) x …

Contrast this to polygon
rasterization: time is a
function of the number of
elements in the scene times the number of lights.Image by nVidia

The algorithm

For each pixel on the screen, do:
a. Calculate ray from eye (O) through pixel (X)

i. Set D = (X-O) / |(X-O)|
ii. Ray: R=O+tD

b. Find ray/primitive hit point (P) and normal (N)
c. Compute shadow, reflection, transparency rays;

recursively call steps a,b,c
d. Calculate lighting of surface at point

Ray/plane intersection

Ray R=O+tD
Poly P={v1,…,vn}

N= (vn-v1)×(v2-v1)
N•(O+tD-v1)=0
Nx(Ox+tDx-vx

1) + Ny(Oy+tDy-vy
1) + Nz(Oz+tDz-vz

1)=0
t = ((N•v1)-(N•O)) / (N•D)

Oc

N

D

O+tD

Ray/sphere intersection
Ray R=O+tD
Sphere S={P | P•P=r2}

(O+tD) • (O+tD) = r2

(Ox+tDx)
2 + (Oy+tDy)

2 + (Oz+tDz)
2 = r2

(Ox
2+Oy

2+Oz
2) + 2t(OxDx+OyDy+OzDz) + t2 (Dx

2+Dy
2+Dz

2) – r2 = 0
t2(D•D) + 2t(O•D) + (O•O)–r2 = 0

Hit test: Point in nonconvex polygon

Ray casting (1974)
● Odd number of crossings = inside
● Issues:

○ How to find a point that you know is inside?
○ What if the ray hits a vertex?
○ Best accelerated by working in 2D

■ You could transform all vertices such that the coordinate system of
the polygon has normal = Z axis…

■ Or, you could observe that crossings are invariant under scaling
transforms and just project along any axis by ignoring (for
example) the Z component.

● Validity proved by the Jordan curve theorem

Point in nonconvex polygon

Winding number (1980s)
● The winding number of a point P in a

curve C is the number of times that the
curve wraps around the point.

● For a simple closed curve (as any well-
behaved polygon should be) this will be
zero if the point is outside the curve, non-
zero of it’s inside.

● The winding number is the sum of the
angles from vi to P to vi+1.

○ Caveat: This method is elegant but slow.
Figure from Eric Haines’
“Point in Polygon Strategies”,
Graphics Gems IV, 1994

Point in convex polygon

Half-planes method
● Each edge defines an infinite half-plane

covering the polygon. If the point P lies
in all of the half-planes then it must be in
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.
○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.

O

N

D

v1 v2 v3

v…v…

vn

vi

vi+

1

P

ee
R

Barycentric coordinates

Barycentric coordinates (t1,t2,t3) are a
coordinate system for describing the
location of a point P inside a triangle (A,
B,C).

● (t1,t2,t3) are the ‘masses’ to be placed
at (A,B,C) respectively so that the
center of gravity of the triangle lies at
P.

● Interestingly, (t1,t2,t3) are also
proportional to the subtriangle areas.

A

B

C

t
1 t

3

t
2

t1+t
3P

A

B

C

t
1 t

3

t
2

t
1

t
3

Q

The Jordan curve theorem

“Any simple closed curve C divides the points of the
plane not on C into two distinct domains (with no
points in common) of which C is the common
boundary.”

● First stated (but proved incorrectly) by Camille Jordan (1838
-1922) in his Cours d'Analyse.

Sketch of proof : (For full proof see Courant & Robbins, 1941.)

● Show that any point in A can be joined to any other point in A
by a path which does not cross C, and likewise for B.

● Show that any path connecting a point in A to a point in B
must cross C.

A
B

C

The Jordan curve theorem on a sphere

Note that the Jordan curve theorem can be extended to
a curve on a sphere, or anything which is topologically
equivalent to a sphere.
“Any simple closed curve on a sphere separates the

surface of the sphere into two distinct regions.”

A

B

Primitives and world transforms

Given a primitive P and its transform S, is it more
efficient to find the intersection in screen space, world
space or object space?

● Not screen space: the transform from camera to screen co-
ordinates is not affine and therefore not angle-preserving. This
would prevent many nice optimizations, such as fast bounding
box tests.

● Our maths aren’t optimized for world space; it would be nice
to have each primitive encoded as statically as possible with
minimal parametrization.

○ You only ever need one cube.

Finding the object/ray intersection
in object space

Find R = O+tD in object coords:
● S is the local-to-world transform of P.
● Invert S to find S-1, the world-to-local transform.
● Define OL=S-1(O) and DL=S-1(D).
● The local ray: RL = OL + t’DL
● Solve for t’ and find the world hit point at S(RL(t’)).

Wyvill (1995) (Part 2, p.45) compared the floating-point ops
required to hit a sphere with a ray in world or local coordinates.
He found that at the time it was actually 37% more efficient, per
ray, to intersect in local space.

Transforming the normal to the surface

Can we transform the normal by S?
● If S is just a concatenated sequence of rotates and

translates then the normal can be transformed by S as
above.

● Scales make things trickier.
To find the world-space normal, multiply the local
normal by the transpose of the inverse of S:

N=(S-1)T NL
● Can ignore translations
● For any rotation Q, (Q-1)T=Q
● Scaling is unaffected by transpose, and a scale of (a,b,c)

becomes (1/a,1/b,1/c) when inverted

local

world

T

NL

N
W

Lighting revisited

We approximate lighting as the sum of the
ambient, diffuse, and specular components of
the light reflected to the eye.

● Associate scalar parameters
 kA, kD and kS with the surface.

● Calculate diffuse and specular
from each light source separately.

O

N

D

P

R

L
1

L
2

Ambient lighting

Ambient light is a flat scalar constant, LA.
● The amount of ambient light LA is a parameter of the scene; the

way it illuminates a particular surface is a parameter of the
surface.

● Some surfaces (ex: cotton wool) have high ambient coefficient
kA; others (ex: steel tabletop) have low kA.

Lighting intensity for ambient light alone:
IA(P) = kALA

Diffuse lighting

The diffuse coefficient kD measures how much
light scatters off the surface.

● Some surfaces (e.g. skin) have high kD, scattering
light from many microscopic facets and breaks.

● Others (e.g. ball bearings) have low kD.

Diffuse lighting intensity:
ID(P) = kDLD(cos θ)
 = kDLD(N•L)

N N

θ

L

L

Specular lighting

The specular coefficient kS measures how
much light reflects off the surface.

● A ball bearing has high kS; I don’t.
● ‘Shininess’ is approximated by a scalar power n.

Specular lighting intensity:
IS(P) = kSLS(cos α)n

 = kSLS(R•E)n

 = kSLS(2(L•N)N×L)•E)n

N

α L

E

R

Total illumination

The total illumination at P is therefore:
I(P) = kALA+kDLD(N•L)+kSLS(R•E)n

summed over all lights L

N

α

E

θ
L

R

Ambient=1
Diffuse=0

Specular=0

Ambient=0
Diffuse=1
Specular=0

Ambient=0.2
Diffuse=0.4
Specular=0.4
(n=2)

Ambient=0
Diffuse=0

Specular=1
(n=2)

Spotlights

To create a spotlight shining along axis S, you
can multiply the (diffuse+specular) term by
(max(L•S,0))m.

● Raising m will tighten the spotlight,
but leave the edges soft.

● If you’d prefer a hard-edged spotlight
of uniform internal intensity, you can
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).

O
D

P

θ

L

S

To simulate shadow in ray tracing, fire a ray
from P towards each light Li. If the ray hits
another object before the light, then discard Li
in the sum.

● This is a boolean removal, so it
will give hard-edged shadows.

● Hard-edged shadows imply a
pinpoint light source.

Shadows

Softer shadows

Shadows in nature are not sharp because light sources are not
infinitely small.

○ Also because light scatters, etc.
For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is (the total number of rays
that aren’t blocked) divided by (the total
number of rays fired).

○ This is an example of Monte-Carlo integration:
a coarse simulation of an integral over a space
by randomly sampling it with many rays.

○ The more rays fired, the smoother the result.

O
D

P

L
1

Reflection

Reflection rays are calculated as
R = 2(-D•N)N+D

● Finding the reflected color is a
recursive raycast.

● Reflection has scene-dependant
performance impact.

O
D

P

L
1

Q

num bounces=1

num bounces=0 num bounces=2

num bounces=3

Transparency

To add transparency, generate and trace a new
transparency ray with OT=P, DT=D.

To support this in software, make color a 1x4 vector
where the fourth component, ‘alpha’,
determines the weight of the recursed
transparency ray.

Refraction

Snell’s Law:

“The ratio of the sines of the angles of
incidence of a ray of light at the interface
between two materials is equal to the inverse
ratio of the refractive indices of the materials is
equal to the ratio of the speeds of light in the
materials.”

Historical note: this formula has been attributed to Willebrord
Snell (1591-1626) and Rene’ Descartes (1596-1650) but first
discovery goes to Ibn Sahl (940-1000) of Baghdad.

Refraction

The angle of incidence of a ray of light where it
strikes a surface is the acute angle between the
ray and the surface normal.
The refractive index of a material is a measure
of how much the speed of light1 is reduced
inside the material.

● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.

1 Or sound waves or other waves

Refraction in ray tracing

Using Snell’s Law and the angle of
incidence of the incoming ray, we
can calculate the angle from the
negative normal to the outbound
ray.

O
D

P

P’

N
θ
1

θ
2

Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in

[-1,1].
● We call this the angle of total

internal reflection: light is trapped
completely inside the surface.

O
D

P

P’

N
θ1

θ2

Total internal
reflection

Refractive index vs transparency

n = 1.0 1.1 1.2 1.3 1.4

0.2
5

0.5
0.7
5

t=
1.

0

1.5

Refraction in action

http://www.youtube.com/watch?v=ZcUp3q1sgNA

References
Jordan curves
R. Courant, H. Robbins, What is Mathematics?, Oxford University Press, 1941
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html

Polygon hit testing
http://tog.acm.org/editors/erich/ptinpoly/
http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing
Foley & van Dam, Computer Graphics (1995)
Jon Genetti and Dan Gordon, Ray Tracing With Adaptive Supersampling in Object Space,
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html (1993)
Zack Waters, “Realistic Raytracing”, http://web.cs.wpi.
edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

